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LETTER TO THE EDITOR 

Stability of the Parisi solution for the SK spin glass model at 
low temperatures close to the critical surface 

A V Goltsev 
A F Ioffe Physical-Technical Institute Academy of Sciences of the USSR, Leningrad, 
194021, USSR 

Received 10 February 1983 

Abstract, In the framework of the Parisi solution of an infinite-ranged Ising spin glass 
we derive the equations which determine the free energy, the magnetisation and the 
function q ( x )  for the general case H # 0 and J o f O .  We solved these equations for two 
cases: ( i )  Jo = 0, H >> 1; (ii) Jo >> 1, H = 0. An existence of massless modes is exactly proved. 

Interest in the infinite-ranged model of a spin glass which was introduced by Sherring- 
ton and Kirkpatrick (1975, 1978) started with the physical idea that it may be solved 
exactly in the mean-field approximation and it is a good testing ground for this 
approach. 

The replica-symmetry solution, proposed by Sherrington and Kirkpatrick (1975, 
1978), becomes unstable at all temperatures T, magnetic fields (H) and mean value 
Jo  which lie below a critical surface in the space (T, H, Jo)  (de Almeida and Thouless 
1978). A critical surface corresponds to the onset of the replica-symmetry breaking. 
The phase diagram (T, H, Jo) ,  expected for the SK model is depicted in figure 1 of 
Toulouse (1980). The attractive replica-symmetry breaking solution was proposed 
by Parisi (1979, 1980a, b, c). A stability analysis which has been performed by De 
Dominicis and Kondor (1983a, b) and Goltsev (1983a), who showed that the Parisi 
solution is stable for T close to T,. It has been shown that the free energy, the 
magnetisation ( m )  and the function 4 ( x )  are governed by some self-consistent system 
of algebraic and differential equations (Goltsev 1983b). In the present paper we 
generalise these equations and prove exactly the existence of massless modes for the 
case H # 0, Jo  # 0. We have solved these equations for two cases: (i) Jo = 0, H >> 1; 
(ii) Jo >> 1, H = 0. 

The Hamiltonian of the SK model of the Ising spin glass is 

X = -1 JijSiSj -H 1 Si 
i j  i 

for N Ising spins S i .  The bond interactions Jij are taken as independent random 
variables with mean value JOIN and mean deviation J / d N .  For simplicity of notation, 
we take the conventions J = 1, k, = 1. The free energy per spin (F) is given by 
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(Sherrington and Kirkpatrick 1975, 1978, de Almeida and Thouless 1978). There 
is a non-trivial stationary point given by 

m, = ( S a )  = m, Qap = (sQ se ) (2) 

where for the matrix Qas we used the parametrisation proposed by Parisi (1979). 
Using a simple method proposed by Duplantier (1981) for the equations (1) and (2) 
we obtain 

pF = - a p ( 1 + I q ' (x ) dx - 2q ( 1 )) + 5 @Jo m 
1 

0 

(3) 
O0 dz - 0'/2 e-z2/2f LO, PH + PJom + Pz (q (O))'", 

m =Iw --CO dfiTTe-zz/2cp[0, ( 2 ~ )  PH+@Jom + p ~ ( q ( O ) ) ' / ~ ,  (4) 

q ( x )  = I_, l p e - z 2 / 2 &  [O, PH+PJom +PZ(4(0) ) ' / '1 ,  
W 

( 5 )  

where the functions F ( y ,  h )  and cp(y, h ) ,  y E [O, 13, and the function $, (y, h ) ,  y E [0, x], 
satisfy the equations 

(6) 

(8) 

. dz 

= -fP2(dq/dy ) [ f "  + Y (f'l2], 

acplay = -tP2(dq/dy)[cp"+ 2~f'cp'l, (7) 

a4,/ay = - fP ' (dq/W[d!  + 2 ~ f ' ( / l : l ,  

where f '=  af/ah, with the boundary conditions 

f(1, h )  = ln(2 cosh h ) ,  ~ ( 1 ,  h )  = tanh h, +x(x ,  h )  =cp2(x, h ) .  (9) 

For the case Jo = 0 the equations (3) and (6 )  were obtained by Parisi (1980b) and the 
equations (4), (9, (7)-(9) were obtained by Goltsev (1983b) and de Almeida and 
Lage (1983). 

The equations (3149) determine the F, m and q ( x )  at all T, H and J o .  For T 
above the critical temperature T,(H, Jo) the replica symmetry is exact and the function 
q ( x )  is constant. In this case equations (3)-(9) give the SK results. 

Let us study the Parisi solution for the case Jo=O and H >>1 when T c ( H ) =  
Tc(H, 0) = $ ( 2 / ~ ) " ~  exp(-H2/2) << 1.  Omitting the details of our solution of (4)-(9) 
we present the next results for T close to T c ( H ) :  
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where t = 1 - T/Tc(H) .  The coefficients a t  and a2 are given by 
p2al = y + T t + O ( t 2 ) ,  14 86 

275 2 
p2a '(x - x 0 )  + tp2a2(x - x ~ ) ~  = 3 r  + ~t + o(t3). 

Let us consider the case H = 0 and Jo >> 1 when a critical temperature Tc(Jo) = 
Tc(O, Jo) = f - ( 2 / ~ ) ~  exp(-Ji/2) << 1 .  At T > Tc(Jo) the replica-symmetric ferromag- 
netic phase is stable. At T = Tc(Jo) there is a phase transition, associated with the 
breaking of the replica symmetry. For T < Tc(Jo) a new broken-symmetry ferromag- 
netic phase is stable (de Almeida and Thouless 1978, Bray and Moore 1980). We 
have studied this phase for T close to Tc(Jo)(t = 1 - T/Tc(Jo)<< 1). The function q ( x )  
up to terms of order O(t2) is determined by equations (10) and (11) with the magnetic 
field H replaced by J o .  For T < Tc(Jo) we obtain that the susceptibility x is constant 
and is equal to 

x = (2/r) ' /2 e-~:/2[1+ ( 2 / , 7 ) 1 / 2 ~ ~  

m = (  

I. 
For the magnetisation ( m )  we have 

mo(J0) - Z  (J~)(J~ +J;' )t + o(t2), 
mo(Jo)-ZT: ( J ~ ) ( J ~ + ~ J O '  ) t  +o(t2) 

for T z Tc(Jo) 
for T < TC(Jo) 

where mo(Jo) is equal to the magnetisation at T = Tc(Jo): 

mo(Jo)= 1 - ( 2 / r )  e . 1 / 2 1  - J 2 / 2  

J o  

The following features should be noted: m and x have a singularity at the transition 
temperature Tc(Jo). 

Recently Sompolinsky (198 1) showed that in the spin glass phase with the broken 
replica symmetry, there is a slow relaxation of the susceptibility from a non-equilibrium 
value X I  = p(1 -q(1)) towards an equilibrium one xo. At the same time the function 
q decays from a finite value (q( 1)) at t l  to q (0) at t o .  For the case H = 0 and Jo < 1 
q(0 )  is equal to zero while for Jo > 1 we obtain q(0) # 0, manifesting the incomplete 
decay of frozen correlation at the largest time scale. 

Now we consider a stability of the Parisi solution. To perform the stability analysis, 
De Dominicis and Kondor (1983a, b) used a truncated model free energy, introduced 
by Parisi (1979). They showed that the stability matrix has three families of eigenvalues 
({A"'}, {A'2'}, {A'3)}). = 
q ( l ) - t - q 2 ( 1 ) = 0  (see also Goltsev 1982a). For the free energy (1) the smallest 
eigenvalue of the third family is equal to 

All these eigenvalues are greater or equal to 

(Goltsev 1982a, b), where the function t ( y ,  h ) ,  y E [O, 13, obeys equation (7) with the 
boundary condition e(1, h )  = sech4 h. Unfortunately, A") and A'2' are unknown. 
However, it may be supposed that the inequality A"', A ( 2 ) ~ A I n 3 2 n  also satisfies (1) for 
the free energy. 

Let us prove that A:!,, = 0. From equation (9) we have 

(a/ax 1 (x ,  h ) = @/ay ( x ,  h ) I y = x + @ / a y  (Y  7 h ) I y = x 

= 2rp(x, h)(a /ax)cp(x ,  h ) .  
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Using equations (7)-(8) yields 

(dlay)@.,(x, h)l,=, =P2(Wdx)(cp’(x, h ) ) 2  
( f ’ ( y ,  h )  = ~ ( y ,  h ) ) .  From this equation and equations (9) we have 

(alax )@, (0, h )Ix=i = P2(d4/dx)IX=i 5(0, h ). 

Using equation ( 5 )  we obtain 

Therefore, A:;” = 0. 

obtain the relation: 
Using the equations (7)-(9) we calculate a value of a@, (x, h) /ay  at x = y = 0 and 

In the case H = 0 and Jo < l ( m  = q (0) = 0) this relation yields that the static (zero-field) 
susceptibility xo is equal to 1 at all T < T, = 1. 
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